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3: Phys.: Condens. Matter 5 (1993) 866-8676, Printed in the UK 

On the description of a two-dimensional Bose gas at low 
densities 

A A Ovchinnikov 
Institute for Nuclear Research of the Russian Academy of Sciences, hloscow 117312, Russia 

Received 30 Mach 1993, in final form 2 July 1993 

Abstract. We propose a new method to describe the interacting Bose gas at zero temperature. 
For the three-dimensional system the correction to the ground-stare energy in density is 
reproduced. For a two-dimensional dilute Bose gas the ground-stale energy in the leading 
order in the panmeter I In pa2]-' where c1 is the scattering length is obtained. 

1. Introduction 

At the present time, two-dimensional (ZD) models are attracting much attention in connection 
with the problems of high-T, superconductivity and fractional quantum Hall effect. In this 
context the description of the ZD system of bosons m a y  be important. For instance the system 
of planar fermions in the magnetic field is equivalent to the system of interacting bosons 
with the additional long-range ChernSimons interaction. The problem of the hard-core 
bosons on a lattice at high densities is closely related to the description of different strongly 
correlated electronic systems. The conventional methods of describing the interacting Bose 
gas are inapplicable Li both of the abovementioned problems. In this context the new 
ways to treat the system in the two different physical limits where the perturbation theory 
is possible are of interest. 

Various methods to describe the system of bosons with the painvise interaction were 
introduced, and these in one way or another consisted in summing up an infinite subset 
of the terms in the perturbation series. An example of this procedure is the Bogoliubov 
[ 11 method which is correct in the high-density limit; this means that the range of the 
potential is much larger than the average particle spacing. In the opposite limit of the dilute 
Bose gas the perturbation theory [l] does not work; this is manifested in the divergence 
in the expression for the energy for the &function type of potential. Various modifications 
of this procedure using the pseudopotential or the diagrammatic expansion methods, for 
example, have been proposed [2]. However, the reason why the procedure in [ I ]  can be 
applied when the two-body potential is not small and the wavefunction is not close to the 
unperturbed wavefunction is obscured. Generalization of this method to the 2D system 
is not straightforward owing to the behaviour of the modified scattering amplitude which 
approaches zero in the low-energy limit. In fact the methods in [Z] can be considered as 
an application of the Bogoliubov approach to a system with the parameters chosen in such 
a way that this approximation is valid and at the same time the density p is small in the 
sense that orplld << 1 (or is of the order of the scattering length). Although this can be a 
basis for the solution of the 2D problem an estimate of the accuracy of the approximation 
[I]  for a given potential is required. 
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The properties of a ZD dilute Bose gas at zero temperature were first studied in 131. In 
the leading order in the expansion parameter the ladder diagrams at the non-zero value of 
chemical potential, related to the ground-state energy, can be calculated. However, in the 
framework of the diagrammatic method there exists a discrepancy in the estimate of the 
corrections to the ladder approximation, i.e. in the form of the expansion parameter at zero 
temperature [4]. The closely related method in [5] is based on the effective separation of 
the long and the short distances. Apart from the independent derivation of the expansion 
parameter, it is also desirable to develop a method which makes a connection between 
the diagrammatic low-density expansions and the strong-coupling Feynman-Bijl approach. 
Finally, for two dimensions in view of the success of the Laughlin wavefunction in the 
theory of the fractional quantum Hall effect the form of the wavefunction in coordinate 
space is of interest. The system at non-zero temperatures was considered in [5,6]. 

In the present paper we suggest a new method to, describe the system of bosons for 
the two limiting cases and we investigate the ground-state properties. of the 2D Bose gas 
at zero temperature. Our method is closely related to the approach proposed by Lieb [7] 
which makes use of the distribution functions related to the ground-state wavefunction. We 
use the decomposition of the log,arithm of the wavefunction into a series over the n-particle 
functions: We argue that at small densities the proposed expansion corresponds to the 
expansion of energy in the small parameter. Although in practice it is difficult to solve the 
corresponding system of equations beyond the leading-order approximation which in the 
framework of OUI approach corresponds to a wavefunction of the Jastrow form, convincing 
arguments in favour of the validity of this procedure in the leading order can be found. 
Of course the distribution functions can be calculated using a wavefunction of the Jastrow 
form. In this way the connection with the approach in [7] can be made. 

The equation for the energy Eo and the wavefunction @.(XI, . . . , X N )  of the ground state 
for a system of N particles in the volume V interacting with the two-body potential U ( x )  
has the form 

where ai = a faxi, xij = xi - xj and we denote by xi the d-dimensional space vector of 
the ith particle throughout the paper. The ground-state wavefunction @(xI, . . . , X N )  is a 
symmetric and positive function of its arguments. According to [8] (see also [9]) one can 
look for the function @ in the form 

@(XI, .  . . , x ~ )  = exp[S(xl,. . . , x ~ ) ] .  

We observe that the function S ( x l ,  . . . , X N )  can be expanded as follows: 

where Sn(xl, , . . , x,) are the symmetric functions depending on the relative interparticle 
distances and subjected to the constraints 

J d r , ~ , ( x l  ..... x , ) = ~  n > z .  (3) 

Integrating equation (2) over the coordinates of N -n particles subsequently for n = 2 ,3  . . ., 
and using the condition (3), one can show that the expansion (2) is irreducible. which means 



2D Bose gas at IOW density 8667 

that for a given function S(x7,  . . . , X N )  the set of functions S, is unique. Substituting 
equation (2) into equation (l), we obtain the equation 

F ( ~ )  = -a2s(x) - as(x) + U ( X )  

where he terms depending on the pair function S&) = S(x )  only are indicated explicitly. 
Integrating equation (4) over the coordinates n + 1, . . . , N and using equation (3) we obtain 
the n-particle equation for the functions S.. In general the system of equations cannot be 
solved and assumptions about the higher-order functions S, are required. For the dilute 
Bose gas the perturbation theory in the s m d  parameter can be used. Although calculations 
in the high orders are too complicated, one can argue that the expansion of the energy in 
the small parameter corresponds simply to the expansion (2). Here we shall demonstrate 
this in the lowest order which corresponds to the pairwise wavefunction. It is plausible that 
this calculation is valid for higher-order terms. Suppose for a while that only the function 
S(x)  is not equal to zero. Integrating equation (4) over the coordinates 1,. . . , N, we obtain 
for the paraheter a defined as 

EQ = Npa 

(p  = N f V; EQ/ V = ap2) the equation 

which is equivalent to a = sdx [U - (as)’] in the infinite-volume limit. Integmting 
equation (4) over the coordinates 3, . . . ~ N and using equation (5). we obtain the equation 

a2s(x) + as as(x) - U ( X )  -pa: dx3 S ( X , ~ ) S ( X ~ )  = -a /V (6 )  

where the notation x = x 1 ~  is used and terms of order 1/V are retained. The right-hand 
side is equal to zero in the limit V + ca. We assume periodic boundary conditions so that 
the integral over the total derivative is zero. Because of the condition (3)  the contribution of 
S3 to equation (5) is of the’form p Sdxl dx2  [a1S(123)]~ and an example of its contribution 
to equation (6) is pidx,83S(123)a3S(13). One can use the solution of equation (6) to 
estimate the function S3 with the help of the three-particle equation and to show that these 
integrals are suppressed. We shall show below that it is the smallness of S ( x )  at distances 
of the order of p-’ld (d = 2.3)  that allow one to neglect the function S3 in the lowest-order 
approximation. Equation (6) reproduces the correction in density [2] to the ground-state 
energy for the three-dimensional (3D) system and predicts the leading order term for the U )  

system. 
Note also that equation (6) can be regarded as an equation for the trial variational 

wavefunction of the Jastrow form. In this case it follows from the form of the solution 
of equation (6) that the variational energy is given by equation (5) with accuracy up to 
higher-order terms in the expansion parameter. 

If the second term on the left-hand side of equation (6) can be neglected, then the 
equation can be easily solved using Fourier transformation: 

I 

pk’$ - k2& - = 0 s k  = 1.. eXp(ibX)S(X) 
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(where Uk = 1 dr exp(ikx)U(x)). Substituting the solution SX of this equation into the 
expression for the energy given by 

a = U0 - /" dr [aS(x)12 = U0 - /"k2S: 
k 

(U, = 1 dr U ( x ) ) ,  we obtain 

a = U0 + - [(k4 + 4ukpkz)' /2  - k2 - 2U kP1 (7) 

where the notation Jk = 1 ddk/(2n)d is used. Equation (7) is the Bogoliubov expression for 
the energy. One can estimate the accuracy of equation (7) for a given two-body potential 
( r ( x ) .  The corrections are determined by the function S ( x )  which should be small in order 
for the approximation (7) to be valid. Briefly, the potential should be relatively shallow 
compared with its width, and the spatial range should be much larger than the average 
particle spacing. 

Let us proceed with the solution of equation (6) in the low-density limit. The particle 
density is assumed to be small so that the dimensionless parameter ap'ld << 1. In this 
formula, a is the scattering length for the potential U and p-'ld is the average interparticle 
distance in &dimensional space. The expansion parameters are I In pa21-' and a3/2p"2 in 
two and three dimensions, respectively. 

2P2 ' S  k 

2. Three-dimensional system 

Let us begin with the case of three spatial dimensions d = 3. Define S&) as the solution 
of equation (6) at p = 0 

aZso + as, as, - U = -qv. (8) 

Here a is the unknown parameter and periodic boundary conditions are implied. In terms 
of the function & ( x )  = e.xp[So(x)] keeping the volume finite and taking into account the 
periodic boundary conditions, we find that 

a = /" dr [uw + so a2sow = S d r  u ( x ) + , ( x )  

is proportional to the scattering length (which is equal to 4na) for the potential U ( x ) .  
For the hard-sphere potential, a is the radius of the potential. In the infinite-volume 
limit the equation has the form (-aZ + U)@&) = 0 which is to be supplemented by 
the boundary condition @&) -+ 1 at r + CO (r = 1x1). At distances much larger than 
the range of the potential the solution is &(r)  = 1 - a / r .  For the energy we have 
a = a + 1 dx (S a2S - So a2&) or, equivalently, 

Let us make use of the Fourier transformation in equations (6) and (8). In the region r > a 
where the condition S d x )  << 1 is satisfied we have So@) = -a/r and the main contribution 
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to the integral i d x  (a&)' comes from the integration over the region of small r - a. Up 
to the corrections in p the same is true for the analogous inte-sral for S(x) .  

Therefore the Fourier transform of the function U - (as)', and the same function for 
SO, are independent of the momentum k at k < l /a .  At these values of k ,  Sok = -a/k2 
and Si is given by the solution of the equation pk2$ - k2& - a = 0. Substituting these 
functions into equation (9), we obtain 

The integral in this expression converges at large k and is saturated at the values 
k - << I/a which justifies our assumption that i d x  exp(ikx)[U - = a. 
The corrections to this formula do not change the result in the approximation considered. 
Evaluating the integral in equation (lo), we obtain the well known result [Z] for the 
expansion of the ground-state energy in powers of density in three dimensions: 

(11) 2 312 112 a = a [ l  + (16/15ir )a p 1. 

3. Two-dimensional system 

Let us proceed with the investigation of the 2D system. In two dimensions it is easy to find 
the solution of equation (6) and to determine the energy a as a function of the density p 
with accuracy up to terms of higher order in the small parameter a - I 1n(pa2)1-'. 

As in the 3D case the solution of equation (6) can be represented in the form 

Sk=-(1/2p)(,/--1) 

where Sk is the Fourier tiansform of the function S ( x )  and the function uk is defined by 

uk = /" dx exp(ikx)[U(x) - aSaS(x)]. 

At sufficiently small k we have uk = a while, at larger k, U& could depend on the momentum 
k. However, it can be shown that in fact with the accuracy of order O(a2) one can take 
Uk N a for all k << a-'. We are interested in the behaviour of the function S ( x )  in the 
region a < r << (ap)-'12. As in three dimensions (ap)-'fl is the characteristic length, a 
kind of correlation length in the problem. In this region, S ( x )  can be calculated as 

Evaluating this expression we find that 

S ( X )  = -a/4rr + ( a p r r )  ln[(ap)I41 (13) 

which is valid in the indicated region with accuracy up to the terms of order a'. One can 
see f" equation (12) that the function S(x) decreases quickly at distances much larger 
than the correlation length 

S(X) E -(l/zn)(u/p)112(1/r) r >) (up)-'/2. 
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Now, using equation (13), one can estimate the function Uk: 

lUk - U1 < (Uz/2X) In(k,” + o(c12), 

This relation justifies the initial assumption about the behaviour of Q. The other way to 
obtain the solution (13) is to represent equation (6) in the form 

[ a2  - u ( x ) w ( x )  = P m a ;  / dr3 S(xIdS(x23) - (a/ v ) w  (14) 

where 4 ( x )  = exp[S(x)J. The Fourier transform of the function U ( x ) @ ( x )  does not depend 
on the momentum at k << 1/01, In the largedistance region where S ( x )  << 1 we can expand 
the function @ ( x )  N 1 + S(x) and neglect terms of order S2(x) .  Then equation (14) has a 
solution of the same form as equation (13). The only difference is that the parameter a is 
replaced by the value of the integral l d x  U ( x ) @ ( x ) .  To calculate this, one has to integrate 
both sides of equation (14) over the space vector in the finite volume V :  

dx U(x)+(x) = a  + P dx (1 $ ( ~ ) ) x ( x )  
(15) 

I -  
x(xIz) = a: / dx3 s(xl3)s(Xu). 

In general the limit V + 00 of an integral of some function over the volume does not 
coincide with the integral of the limiting function, because in the finite volume the function 
may have an asymptote which is a constant divided by V .  This is indeed the case for the 
function x ( x )  since the integral l d x  x ( x )  is equal to zero in the finite volume. However, 
one can substitute the product of the limiting functions [I - @ ( x ) ] x ( x )  into equation (15) 
since both functions approach zero at r -+ 03. Alternatively, one can use equation (6) 
directly in the infinite-volume limit. The function x ( r )  can be evaluated using equation (12): 

(01 << r << (up)-”*) x ( r )  Y aS(r)  

x ( r )  N (r >> 

The integral on the right-hand side of equation (15) is determined by the long-distance 
region ( S ( x )  << 1) and can be estimated as O(a2). Thus the solution of equation (6) as a 
function of the parameter a is found. 

On the other hand at sufficiently small r the function # ( x )  can be found approximately 
as the solution of the equation [-aZ + U ( x ) ] @ ( x )  = 0 because the right-hand side of 
equation (14) is of the order of p .  The solution is @O(r) = Cln(r/oc) where C is an 
arbitrary constant and 01 is the scattering length for the potential U ( r )  (the region r >> 01 

is implied). In two dimensions the scattering length is defined by the behaviour of the 
scattering amplitude at low energies which (for our equation) is given by 

j ( k )  = r r / [ l n ( f k a )  + y - $in] + o(k01) 

where If(k)l = (2rrk)’/21f(k)l is the modified scattering amplitude, k is the momentum 
and y = 0.5772 is the Euler constant. For the 2D hard-sphere potential the scattering length 
01 is equal to the radius of the potential. The correction &$(r) - aprZ to the solution of 
the homogeneous equation can be easily estimated using equation (13). The correction is 
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of the order of unity at distances of the order of the correlation length however, 
it is small (&$(r) - a) at distances r - p-'r*. At r - p- ' l z ,  equation (13) is still valid. 
Comparing the solution given by equation (13) with the function &(r) we obtain the relation 

c In(r/a) = 1 - a /4n  + ( a p n )  ~ n [ ( a p ) " ~ r ]  (16) 

which should be valid in the region a Q r << with logarithmic accuracy. In 
particular, for r - p-'12, it is valid with accuracy up to the terms of the order of a. Thus 
in the leading order in the small parameter I In(pa2)1-', C = a /2r  and the energy is 

a = 4n/l In(pa2)1 + O[l/l In(pa2)lZ1 (17) 

in agreement with the result in [3]. Equation (17) is our final result for the 2D system. 
Let us comment on the accuracy of this expression. It was shown that the leading-order 
corrections to equation (16) are of the order of a at r N p-ll' since terms of the order of 
[S(x)I2 are suppressed as (a ha)'. The equation for a has the form 

(a/4n)l ln(ap&I = 1 t O(a). 

Although from this equation the first two terms in the expansion of energy can be found, 
i.e. 

a = 4n[1/1 In(pa2)1 - In I 1n(pa~)1/[ ln(pa~)1~)  (18) 

our method and the method in [3] do not allow one to determine terms of the order of 
az - l / [ ln (pa2) ]2 .  With logarithmic accuracy the second term (which is of the order of 
a21na) in equation (18) is of the order of the omitted terms and the expansion (18) makes 
sense only in the extreme dilute limit In 1 In(paZ)I >> 1. Below we consider the corrections 
due to the three-particle component of the wavefunction and show that the correct expansion 
parameter is a. We disagree with the statement in [4] that the terms corresponding to the 
three-particle collisions are suppressed as a power of pa2. The second term in equation (18) 
is in agreement with the corresponding term in the formula in [4]. 

Naively, from the three-particle equation the function S3 can be estimated to within an 
order of magnitude as S(1, 2,3) - S(13)S(23) +permutations. Then the conhibution of 
S, to equation (6) at distances of the order of p-'lz which is determined by the integral 
p J d x ~  S(l3)(.31& - @)S(123) (see equation (3)) is suppressed owing to the smallness of 
the function S ( x )  at these distances. In fact the three-particle equation can be solved in the 
leading order in the expansion parameter (which means that terms of the order of SzS3 in 
this equation should be neglected) in the momentum representation and the corresponding 
integral in the momentum space can be estimated (see the appendix). 

At the same time, at short distances where the two particles interact strongly, the pair 
function is not expected to be very different from the solution of the two-body problem 
whether or not the function S3 is taken into account. In other words, although the function S, 
is not necessarily small at short distances, our estimate of the right-hand side of equation (14) 
as well as equation (1G) are valid to within an order of magnitude. Note that the 'momentum' 
corresponding to the two-particle equation is of the order of the correlation length which 
characterizes the screening of the pair wavefunction due to the other particles. Hence the 
result (17) has a simple physical interpretation. Namely the energy of the two particles 
interacting with the potential U located in the two-dimensional volume V is of the order 
of f/V where the modified scattering amplitude f should be normalized at k - p'12. 
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Multiplying the result by the number of pairs we obtain the result (17). In three dimensions 
this corresponds to the first term in equation (1 I). 

At non-zero temperatures the behaviour of a 2D dilute Bose gas is completely different 
from the behaviour of the system in three dimensions. In particular, in contrast with the 
3D system, the expansion parameter at zero temperature is different from the diluteness 
parameter found from the condition that the critical temperature Tc is close to the prediction 
obtained using the Bogoliubov form of the spectrum (In1 In(po12)1 >> 1) [6]. The 
determination of T, beyond this extreme dilute limit remains an open question. 

4. The distribution functions 

Another approach to the description of the dilute Bose gas based on the equations for the 
distribution functions related to the function Q was proposed in [7]. We shall show below 
that the assumptions made in [7] can be justified in the framework of our approach. Let us 
briefly describe this method. The n-particle distribution function is defined by 

The first and the third terms on the right-hand side are of the order of N while the left- 
hand side is of the order of unity. In the leading order, cancellation of these terms occurs 
and corrections of the order of 1 fN  are important. The approximation for the distribution 
functions g, and g4 used in [7] to evaluate the right-hand side of equation (21)  is the 
superposition approximation: 

From physical considerations it is clear that in the limit V -+ 00 the function I ( x )  -+ g(x) 
while for a finite volume it can be found using the set of the equations 
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For instance, for the four-particle function g4, substituting the ansafz (22) into the formula 
s d x 3  dxqg4(1.2,3,4) = V’g(x12) we find that the corresponding pair function is 

i‘4’(x) = m ( 1  - ; /dx3f(x13)f(x*3)) 

where the function f ( x )  = 1 - g ( x )  can be taken in the infinitevolume limit. These 
corrections are not important in the second term of the right-hand side of equation (21). 
Substituting the expressions for the functions g3 and g4 into equation (21) and taking the 
limit V + CO, we obtain an equation for the pair distribution function g ( x ) .  Assuming that 
the function f ( x )  is small and retaining terms of the leading order in f ( x ) ,  we find that 

[-a* + u(x)ig(x) = 2ap.m) -ap?/dx3 f ( x l 3 ) f ( X d  (23) 

This equation is valid for those r where the function f (x )  is small ( f ( x )  << 1). 

of equation (23) for the 2D problem in the region where f ( x )  < 1 is 

g ( x )  = 1 + a /4z  + (a/2n) ~n[(ap)”’r~ 

Equation (23) can be solved in the same way as equation (6). For instance the solution 

for r << ( ~ p ) - l / ~ .  Repeating the arguments leading to equation (16), we obtain the result 
(17). 

In three dimensions the solution of equation (23) at distances r << (up)-’/’ is 

g ( x )  = [I + (16/15n’)c~~/’p’’~] - a/r. 

Comparing this function with the solution of the homogeneous equation &(r) = C(l -a/?-) 
which is valid with accuracy of the order of c ~ ~ / ~ p ~ / ~  at r < p-’l3 we obtain the result (1 1). 

Let us comment on the relation of our approach to that of [7]. The function g ( x )  can be 
calculated using the obtained wavefunction of the Jastrow form. Formally the problem is 
similar to the calculation of the distribution functions of the classical liquid. Although the 
expansion in density for the corresponding partition function is not valid (integral sdx S ( x )  
diverges at large distances) the formulae in [7] resulting in equation (23) can be obtained 
to the lowest order in the expansion parameter. One can establish direct correspondence 
between equations (6) and (23). The function g ( x )  at long distances can be calculated 
by means of the cluster expansion (see, e.g., [lo, 111). The connected diagrams with the 
lines corresponding to the function @ ( x )  - 1 between points 1 and 2 are considered. At 
small momenta the Fourier transform of the function @ ( x )  - 1 may be replaced by Sk. In 
the integrals corresponding to diagrams of the cluster expansion, long distances where the 
function S ( x )  is small are important. Therefore, only diagrams that do not contain the two 
different paths connecting points I and 2 are required. These diagrams can be referred to 
as ‘chain’ diagrams. Adding one more line to each of these diagrams leads to an extra 
suppression. Since S ( r )  + 0 at r + CO, it is clear that the sum of the ‘chain’ diagrams 
gives the exact result for the asymptote of the distribution function. The ‘chain’ diagrams 
can be summed in the momentum representation. We obtain the following relation: 

fk = -sk/(l - P s k ) .  (24) 

Substituting the solutions of equations (6) and (23) into equation (24) we find that this 
relation is valid with the accuracy required for the estimates (1 1) and (17). 
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The same approximation can be used to calculate the Feynman structure factor F(k) 
which determines the energy of the low-lying excitations (phonons). In this case the 
distribution function related to the square of the wavefunction 0 (defined as in equation (19)) 
should be calculated. The Structure factor F(k) can be expressed through the Fourier 
transform of the pair distribution function as 

F(k) = p + p2J dr exp(ikx)[G(x) - I]  

G(xiz)= V 2 / d r i . . . d X ~ l @ ( X ~ , X z  , . . .  ,XN)I' 

where the normalization of the wavefunction (010) = 1 is implied, Calculating the sum 
of the 'chain' diagrams we find that 

F ( k )  = P[ l / ( l  - 2 P W l .  

In contrast with the other wavefunctions of the Jastrow form used in the variational studies 
of the Bose liquid [IO] we obtain the correct behaviour F ( k )  - k at k + 0 owing to the 
behaviour S ( r )  - l/rd-' at asymptotically large distances [ 111 (for a related discussion see 
[12]). The phonon energy 

w(k) = pk2/F(k) = d w  
is in agreement with the predictions of other approaches [I ,  21. The formula for the spectrum 
is valid at k << (up)'/2, In order to determine the dispersion in the region k - p ' l Z .  where 
one would expect the existence of the roton minimum, apart from the calculation of G(r)  at 
r - p - ' t z ,  corrections to the Feynman variational formula for o ( k )  are required. We hope 
to discuss this problem elsewhere. The momentum distribution nk can be readily calculated. 
In terms of the wavefunction it has the form 

nx = N 1 dx exp(ikx) / dxz . . . dm @ ( x ,  xz, . , . I X N ) @ ( O ,  ~ 2 ,  . . . , x ~ )  

(1,nk = p ;  the normalization (@I@) = 1 is implied). The only difference in comparison 
with the previous calculations is that the two lines of the 'chain' diagram connecting points 
1 and 2 with the other points correspond to the function exp[S(x)] while the rest of the 
lines are related to the function exp[2S(x)]. The result is as follows: 

nk = pzS;/(l - 2pSk)  = i[(kZ + Zup)/d- - 11 

which coincides with the known expression [1,2]. In two dimensions the expression 
(17) should be substituted for a. In two dimensions the condensate fraction is No = 

Finally, the situation is different for the one-dimensional problem. From the viewpoint 
of our method the low-density limit coincides with the weak-coupling limit. In this case, 
equation (7) is correct in the weak-interaction limit regardless of the shape of the potential 
while, for strong coupling, the perturbation theory is inapplicable which is in agreement 
with the exact solution of the problem for the S- function potential [13]. The same can be 
true for the lattice system. For instance for a system described by the Hamiltonian (see, 

N[1 - (1/4n)u]. 

e.g., [141) 

at U + 0 and a density of the order of unity, equation (7) is asymptotically exact in any 
dimensions. 
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5. Conclusion 

In conclusion, we presented a method to describe the interacting Bose gas at zero 
temperature. The expansion in the irreducible functions for a logarithm of the ground- 
state wavefunction was used. For low densities the equation for a JasWow wavefunction 
was solved. It was argued that the contribution of the three-particle component of the 
wavefunction to the equation is suppressed. For a 3D system the leading-order correction 
for the ground-state energy in the particle density was reproduced. For the 2D dilute Bose 
gas the ground-state energy in the leading order in the parameter I In(pcy2)1-L where 01 is 
the ZD scattering length was obtained. 
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Appendix 

Here we estimate the contribution of the three-particle function S3(xl, xZr x3) to equation (6). 
The three-particle equation is obtained after integration of the basic equation (1) over the 
coordinates 4, . . . , N .  It is necessruy to take into account equations (5) and (6) for the terms 
that depend on only one of the variables x12, ~ 1 3 .  ~ 2 3 ,  In the coordinate space the equation 
is 

?(a1 1 2  +a,Z+a,2~s3(1,z,3)+als(iz)als(ls~+azs~zl)~s(z3)+~s(si)a3sgz) + ... 
= ( I I V p ) [ F ( l Z )  + F(13) + F(23)I (AI) 

where the ellipsis (. . .) stands for the terms of the order of S2S3 and S:. These terms are 
not important for the solution of equation (Al) in the leading order. The right-hand side 
is equal to zero in the infinite-volume limit. In the momentum representation the function 
S(kl, kz. 4) i s  defined as 

1 drl dxz dx3 exp(iklxl + ik2xz + ik3x~)S(l, 2,3) = (2n)dSd(kl + kz + k3)S(k1, kz. k3) 

The solution of equation (Al) is 

SWI. kzl k3) = -[z/(k: + k: +k:)l(klkzSk,Sk2 + kik3Sk,Sk, + kzk3Sk2sk2). (W 

The contribution of the function S3 to the left-hand side of equation (6) has the following 
form: 

2P/dXss(13)(818~ -a:)s3(1,z,3) (A3) 
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which is a function of the variable XIZ = x .  Substituting the solution (A2) into the integral 
in momentum space corresponding to the Fourier transform of the function (A3) we obtain 
the following expression: 

where k is the external momentum. It is possible to estimate the integral in equation (A4) 
at different values of the momentum k with the help of equation (12). For example at k = 0 
we have 

4p p=s;. s, 
This integral is easily estimated as O(a2) and O[a(a3/2pl/Z)]  in 2D and 3D space, 
respectively. On analysis of equation (A4) i t  is easy to show that these estimates are 
valid at arbitrary k. Therefore the considered contribution does not change the result in the 
approximation required for the derivation of equations (11) and (17). 
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